Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Sci Rep ; 11(1): 17649, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1392886

ABSTRACT

The ubiquitous activity of humans is a fundamental feature of urban environments affecting local wildlife in several ways. Testing the influence of human disturbance would ideally need experimental approach, however, in cities, this is challenging at relevant spatial and temporal scales. Thus, to better understand the ecological effects of human activity, we exploited the opportunity that the city-wide lockdowns due to the COVID-19 pandemic provided during the spring of 2020. We assessed changes in reproductive success of great tits (Parus major) at two urban habitats affected strikingly differently by the 'anthropause', and at an unaffected forest site. Our results do not support that urban great tits benefited from reduced human mobility during the lockdown. First, at one of our urban sites, the strongly (- 44%) reduced human disturbance in 2020 (compared to a long-term reference period) did not increase birds' reproductive output relative to the forest habitat where human disturbance was low in all years. Second, in the other urban habitat, recreational human activity considerably increased (+ 40%) during the lockdown and this was associated with strongly reduced nestling body size compared to the pre-COVID reference year. Analyses of other environmental factors (meteorological conditions, lockdown-induced changes in air pollution) suggest that these are not likely to explain our results. Our study supports that intensified human disturbance can have adverse fitness consequences in urban populations. It also highlights that a few months of 'anthropause' is not enough to counterweight the detrimental impacts of urbanization on local wildlife populations.


Subject(s)
COVID-19 , Ecosystem , Quarantine , Reproduction/physiology , SARS-CoV-2 , Songbirds/physiology , Animals , COVID-19/epidemiology , COVID-19/prevention & control , Cities/epidemiology , Female , Humans , Male
2.
J Insect Physiol ; 132: 104248, 2021 07.
Article in English | MEDLINE | ID: covidwho-1303601

ABSTRACT

Since 2016, the fall armyworm (FAW, Spodoptera frugiperda) has invaded large parts of Africa and Asia, impacting millions of hectares of maize crops and thereby posing a major threat to food security. The rapid geographic spread and outbreak dynamics of S. frugiperda are tied to its unique dispersal ability and long-distance migration capability. Yet, up till present, limited research has been conducted on the physiological determinants of S. frugiperda flight and migration. In this study, we used laboratory experiments to assess whether mating and oviposition affect S. frugiperda flight ability and wingbeat frequency. During 2019-2020, migratory FAW females were trapped in Yunnan (China) and dissected to assess ovarian development. Tethered flight assays showed that gravid S. frugiperda females exhibited strong flight ability at 1-3 days following the onset of oviposition. Flight distance and duration negatively correlated with the number of deposited eggs. Ovarian dissections further showed that over 50% of migrant females were mated and 46-54% had initiated oviposition. Our study shows the complex, yet nuanced effects of reproductive status on flight capacity, with possibly a facultative trade-off between flight and reproduction. These novel insights into S. frugiperda physiology and migration behavior can guide future monitoring and integrated pest management (IPM) programs against this newly-invasive pest in China and abroad.


Subject(s)
Flight, Animal/physiology , Reproduction/physiology , Spodoptera/physiology , Animal Distribution/physiology , Animals , Female , Oviposition , Pest Control
3.
Reprod Biomed Online ; 42(1): 260-267, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065548

ABSTRACT

RESEARCH QUESTION: Does SARS-CoV-2 infection have an effect on ovarian reserve, sex hormones and menstruation of women of child-bearing age? DESIGN: This is a retrospective, cross-sectional study in which clinical and laboratory data from 237 women of child-bearing age diagnosed with COVID-19 were retrospectively reviewed. Menstrual data from 177 patients were analysed. Blood samples from the early follicular phase were tested for sex hormones and anti-Müllerian hormone (AMH). RESULTS: Among 237 patients with confirmed COVID-19, severely ill patients had more comorbidities than mildly ill patients (34% versus 8%), particularly for patients with diabetes, hepatic disease and malignant tumours. Of 177 patients with menstrual records, 45 (25%) patients presented with menstrual volume changes, and 50 (28%) patients had menstrual cycle changes, mainly a decreased volume (20%) and a prolonged cycle (19%). The average sex hormone and AMH concentrations of women of child-bearing age with COVID-19 were not different from those of age-matched controls. CONCLUSIONS: Average sex hormone concentrations and ovarian reserve did not change significantly in COVID-19 women of child-bearing age. Nearly one-fifth of patients exhibited a menstrual volume decrease or cycle prolongation. The menstruation changes of these patients might be the consequence of transient sex hormone changes caused by suppression of ovarian function that quickly resume after recovery.


Subject(s)
COVID-19 , Gonadal Steroid Hormones/blood , Menstruation/physiology , Reproduction/physiology , Adolescent , Adult , Age Factors , COVID-19/blood , COVID-19/epidemiology , COVID-19/pathology , COVID-19/physiopathology , China/epidemiology , Comorbidity , Cross-Sectional Studies , Female , Gonadal Steroid Hormones/analysis , Humans , Menstrual Cycle/physiology , Middle Aged , Ovarian Reserve/physiology , Ovary/physiology , Retrospective Studies , SARS-CoV-2/physiology , Severity of Illness Index , Young Adult
4.
Reprod Sci ; 29(1): 1-6, 2022 01.
Article in English | MEDLINE | ID: covidwho-1014274

ABSTRACT

COVID-19 (coronavirus disease 2019) is the current world health crisis, producing extensive morbidity and mortality across all age groups. Given the established roles of zinc in combating oxidative damage and viral infections, zinc is being trialed as a treatment modality against COVID-19. Zinc also has confirmed roles in both male and female reproduction. The possible depletion of zinc with the oxidative events of COVID-19 is especially relevant to the fertility of affected couples. This review aims to present the pathophysiology of COVID-19, especially in relation to reproductive function; the role of zinc in the COVID-19 disease process; and how zinc depletion in concert with cytokine storm and reactive oxygen species production could affect reproduction. It also highlights research areas to better the understanding of COVID-19 and its impact on fertility and potential ways to mitigate the impact.


Subject(s)
COVID-19/metabolism , Oxidative Stress/physiology , Reproduction/physiology , Zinc/metabolism , Female , Humans , Male , Reactive Oxygen Species/metabolism
5.
Fertil Steril ; 115(4): 813-823, 2021 04.
Article in English | MEDLINE | ID: covidwho-1002526

ABSTRACT

Many couples initially deferred attempts at pregnancy or delayed fertility care due to concerns about coronavirus disease 2019 (COVID-19). One significant fear during the COVID-19 pandemic was the possibility of sexual transmission. Many couples have since resumed fertility care while accepting the various uncertainties associated with severe acute respiratory syndrome coronavirus 2, including the evolving knowledge related to male reproductive health. Significant research has been conducted exploring viral shedding, tropism, sexual transmission, the impact of male reproductive hormones, and possible implications to semen quality. However, to date, limited definitive evidence exists regarding many of these aspects, creating a challenging landscape for both patients and physicians to obtain and provide the best clinical care. This review provides a comprehensive assessment of the evolving literature concerning COVID-19 and male sexual and reproductive health, and guidance for patient counseling.


Subject(s)
COVID-19/epidemiology , Genitalia, Male/virology , Men's Health/trends , Reproduction/physiology , Reproductive Health/trends , SARS-CoV-2/isolation & purification , COVID-19/prevention & control , Humans , Infertility, Male/epidemiology , Infertility, Male/prevention & control , Male
6.
J Ovarian Res ; 13(1): 140, 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-947939

ABSTRACT

Currently, the world is in the seventh month of the COVID-19 pandemic. Globally, infections with novel SARS-CoV-2 virus are continuously rising with mounting numbers of deaths. International and local public health responses, almost in synchrony, imposed restrictions to minimize spread of the virus, overload of health system capacity, and deficit of personal protective equipment (PPE). Although in most cases the symptoms are mild or absent, SARS-CoV-2 infection can lead to serious acute respiratory disease and multisystem failure. The research community responded to this new disease with a high level of transparency and data sharing; with the aim to better understand the origin, pathophysiology, epidemiology and clinical manifestations. The ultimate goal of this research is to develop vaccines for prevention, mitigation strategies, as well as potential therapeutics.The aim of this review is to summarize current knowledge regarding the novel SARS CoV-2, including its pathophysiology and epidemiology, as well as, what is known about the potential impact of COVID-19 on reproduction, fertility care, pregnancy and neonatal outcome. This summary also evaluates the effects of this pandemic on reproductive care and research, from Canadian perspective, and discusses future implications.In summary, reported data on pregnant women is limited, suggesting that COVID-19 symptoms and severity of the disease during pregnancy are similar to those in non-pregnant women, with pregnancy outcomes closely related to severity of maternal disease. Evidence of SARS-CoV-2 effects on gametes is limited. Human reproduction societies have issued guidelines for practice during COVID-19 pandemic that include implementation of mitigation practices and infection control protocols in fertility care units. In Canada, imposed restrictions at the beginning of the pandemic were successful in containing spread of the infection, allowing for eventual resumption of assisted reproductive treatments under new guidelines for practice. Canada dedicated funds to support COVID-19 research including a surveillance study to monitor outcomes of COVID-19 during pregnancy and assisted reproduction. Continuous evaluation of new evidence must be in place to carefully adjust recommendations on patient management during assisted reproductive technologies (ART) and in pregnancy.


Subject(s)
COVID-19/physiopathology , Reproduction/physiology , Reproductive Techniques, Assisted , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19/virology , Canada/epidemiology , Female , Humans , Pandemics , Pregnancy , Pregnancy Outcome , SARS-CoV-2/pathogenicity
7.
J Assist Reprod Genet ; 37(10): 2399-2403, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-712461

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a severe global pandemic, affecting mostly the respiratory system. Understandably, attention is also being directed towards the urogenital tract. In this work, expression patterns of various host molecules possibly involved in viral entry and replication were investigated in human female and male reproductive systems by inquiring online repositories, including the Human Protein Atlas, GTEx, FANTOM5. Our findings highlight that male reproductive tissues could be targeted by SARS-CoV-2, particularly the testis since it co-expresses the receptor (ACE2) and the protease (TMPRSS) needed for viral entry. We hypothesized that SARS-CoV-2 infection could have repercussions on the fertility status of male individuals Potential infectivity of SARS-CoV-2 in reproductive tissues should be considered in reproductive medicine and management of in vitro fertilization in present and future generations.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Ovary/virology , Pneumonia, Viral/epidemiology , Testis/virology , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/virology , Female , Humans , Male , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , Reproduction/physiology , SARS-CoV-2
9.
Med Hypotheses ; 143: 110083, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-639339

ABSTRACT

The outbreak of CoronaVirus Disease19 (COVID19) in December 2019 posed a serious threat to public safety, and its rapid spread caused a global health emergency. Clinical data show that in addition to respiratory system damage, some male patients with COVID-19 are also accompanied by abnormal renal function and even renal damage. As the main receptor of syndrome coronavirus 2 (SARS-CoV-2), angiotensin converting enzyme 2 (ACE2) is also found to be highly expressed not only in respiratory mucosa and alveolar epithelial cells, but also in renal tubule cells, testicular Leydig cells and seminiferous tubule cells. This suggests that SARS-CoV-2 has the possibility of infecting the male reproductive system, and the recent detection of SARS-CoV-2 in the patient's semen further confirms this theory. In previous studies, it has been found that ACE2 has the ability to regulate autophagy. Not only that, recent studies have also found that SARS-CoV-2 infection can also lead to a reduction in autophagy. All of these associate SARS-CoV-2 with autophagy. Furthermore, autophagy has been shown to have an effect on male reproduction in many studies. Based on these, we propose the hypothesis that SARS-CoV-2 affects male reproductive function by regulating autophagy. This hypothesis may provide a new idea for future treatment of COVID-19 male patients with reproductive function injury, and it can also prompt medical staff and patients to consciously check their reproductive function.


Subject(s)
Autophagy/physiology , Betacoronavirus , Coronavirus Infections/physiopathology , Pneumonia, Viral/physiopathology , Reproduction/physiology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/pathology , Genitalia, Male/pathology , Genitalia, Male/physiopathology , Genitalia, Male/virology , Humans , Infertility, Male/etiology , Infertility, Male/pathology , Infertility, Male/physiopathology , Male , Models, Biological , Pandemics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , SARS-CoV-2 , Spermatozoa/pathology , Spermatozoa/virology
10.
Fertil Steril ; 114(1): 33-43, 2020 07.
Article in English | MEDLINE | ID: covidwho-634346

ABSTRACT

OBJECTIVE: To identify cell types in the male and female reproductive systems at risk for SARS-CoV-2 infection because of the expression of host genes and proteins used by the virus for cell entry. DESIGN: Descriptive analysis of transcriptomic and proteomic data. SETTING: Academic research department and clinical diagnostic laboratory. PATIENT(S): Not applicable (focus was on previously generated gene and protein expression data). INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Identification of cell types coexpressing the key angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) genes and proteins as well as other candidates potentially involved in SARS-CoV-2 cell entry. RESULT(S): On the basis of single-cell RNA sequencing data, coexpression of ACE2 and TMPRSS2 was not detected in testicular cells, including sperm. A subpopulation of oocytes in nonhuman primate ovarian tissue was found to express ACE2 and TMPRSS2, but coexpression was not observed in ovarian somatic cells. RNA expression of TMPRSS2 in 18 samples of human cumulus cells was shown to be low or absent. There was general agreement between publicly available bulk RNA and protein datasets in terms of ACE2 and TMPRSS2 expression patterns in testis, ovary, endometrial, and placental cells. CONCLUSION(S): These analyses suggest that SARS-CoV-2 infection is unlikely to have long-term effects on male and female reproductive function. Although the results cannot be considered definitive, they imply that procedures in which oocytes are collected and fertilized in vitro are associated with very little risk of viral transmission from gametes to embryos and may indeed have the potential to minimize exposure of susceptible reproductive cell types to infection in comparison with natural conception.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Fertility/physiology , Gene Expression Regulation, Viral/physiology , Pneumonia, Viral/metabolism , Reproduction/physiology , Virus Internalization , Adolescent , Adult , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , COVID-19 , Cell Line , Coronavirus Infections/genetics , Female , Humans , Macaca fascicularis , Male , Ovary/cytology , Ovary/metabolism , Ovary/virology , Pandemics , Peptidyl-Dipeptidase A/biosynthesis , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Pregnancy , Proteomics/methods , SARS-CoV-2 , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Testis/cytology , Testis/metabolism , Testis/virology , Transcriptome/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL